The Involutory Dimension of Involution Posets
نویسندگان
چکیده
The involutory dimension, if it exists, of an involution poset P := (P,≤,′ ) is the minimum cardinality of a family of linear extensions of ≤, involutory with respect to ′, whose intersection is the ordering ≤. We show that the involutory dimension of an involution poset exists iff any pair of isotropic elements are orthogonal. Some characterizations of the involutory dimension of such posets are given. We study prime order ideals in involution posets and use them to generate involutory linear extensions of the partial ordering on orthoposets. We prove several of the standard results in the theory of the order dimension of posets for the involutory dimension of involution posets. For example, we show that the involutory dimension of a finite orthoposet does not exceed the cardinality of an antichain of maximal cardinality. We illustrate the fact that the order dimension of an orthoposet may be different from the involutory dimension. Mathematics Subject Classifications (2000): 03G12, 06A06, 06A07.
منابع مشابه
Lightweight MDS Involution Matrices
In this article, we provide new methods to look for lightweight MDS matrices, and in particular involutory ones. By proving many new properties and equivalence classes for various MDS matrices constructions such as circulant, Hadamard, Cauchy and Hadamard-Cauchy, we exhibit new search algorithms that greatly reduce the search space and make lightweight MDS matrices of rather high dimension poss...
متن کاملJanet - Riquier Theory and the Riemann - Lanczos Problems in 2 and 3 Dimensions
The Riemann-Lanczos problem for 4-dimensional manifolds was discussed by Bampi and Caviglia. Using exterior differential systems they showed that it was not an involutory differential system until a suitable prolongation was made. Here, we introduce the alternative Janet-Riquier theory and use it to consider the Riemann-Lanczos problem in 2 and 3 dimensions. We find that in 2 dimensions, the Ri...
متن کاملInvolutory Differentially 4-Uniform Permutations from Known Constructions
Substitution box (S-box) is an important component of block ciphers for providing confusion into the cryptosystems. The functions used as S-boxes should have low differential uniformity, high nonlinearity and high algebraic degree. Due to the lack of knowledge on the existence of APN permutations over F22k , which have the lowest differential uniformity, when k > 3, they are often constructed f...
متن کاملSpherical Venn Diagrams with Involutory Isometries
In this paper we give a construction, for any n, of an n-Venn diagram on the sphere that has antipodal symmetry; that is, the diagram is fixed by the map that takes a point on the sphere to the corresponding antipodal point. Thus, along with certain diagrams due to Anthony Edwards which can be drawn with rotational and reflective symmetry, for any isometry of the sphere that is an involution, t...
متن کاملA Counting of the minimal realizations of the posets of dimension two
The posets of dimension 2 are those posets whose minimal realizations have two elements, that is, which may be obtained as the intersection of two of their linear extensions. Gallai's decomposition of a poset allows for a simple formula to count the number of the distinct minimal realizations of the posets of dimension 2. As an easy consequence, the characterization of M. El-Zahar and of N.W. S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Order
دوره 18 شماره
صفحات -
تاریخ انتشار 2001